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Abstract 

The aim of this work is to find a new condition to compute aversion to risk integral which 

solves the associated second order differential equation with boundary conditions. The 

evaluation of an individual aversion to risk forms an integral part of expert‟s investment 

opinion. The evaluation technique of general insurance is theoretically deficient in 

formation and deepenedscientific methodologies. Investors‟ total wealth is usually 

categorizedinto assets which are assigned to short term project and free asset which 

assignment is subject to indefinite interval of time. The insufficient risk methodologies 

looks appropriate for the former category while the latter category is distributed in line 

with individual risk aversion intensity. 
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Introduction 

This paper aims to establish a different 

condition to evaluate aversion to risk, 

aversion integral which the solves the 

associated second order differential 

equation with boundary conditions. 

Aversion is the mathematical construct of 

the feeling which guides an insurance 

agent taking a decision whose outcome is 

an uncertain event. Analytic and  

stochastic forms have been constructed 

through Taylor‘s expansion of utility 

about the initial wealth. In Thomas (2016), 

it was stated that the analytic technique of 

Taylor‘s expansion will only be valid 

when the share or interest in insurance 

business are conspicuously small and 

consequently the risk aversion will be 

close to zero for every one making its 

measurement difficult and subject to 

quantisation noise. Aversion to risk was 

originally introduced by in Pratt(1964) and 

Arrow(1963,1965,1970) where 

professional expertise was drawn to 

examine the association between behavior 

to risk and wealth. From Arrow (1970), it 

is apparent that the evaluation of this 

concept as wealth differs is strikingly 

observable to predict inference under risk 

uncertainties where it was suggested that 

aversion to risk is proportional to wealth. 

Empirical studies such as Holt and Laury 

(2002); Szpiro(1983); Eisenhauer and 

Halek (1999) all fall in line with the 

hypothesis of Arrow (1970) that aversion 

to risk increase with wealth. Bellante and 

Saba (1986) and levy (1994) however are 

among few other scholars who disagreed 

with Arrow (1970) based on empirical 

findings that aversion to risk increases 

with wealth where the authors discovered 

that aversion reduces as wealth declines. 

Aversion to risk may also be constant 

irrespective of the wealth level as seen in 

Szpiro (1986), Chiapori and Paiella 

(2011). Morin and Suarez (1983);  Halek 

and Eisenhauer (2001)  discovered that at 

low level of wealth, relative aversion to 
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risk inreases with wealth but at higher 

levels of wealth, aversion decreases with 

wealth thus  describing a novel non-linear 

association. The authors note that in case 

of the affluent individuals, the intensity of 

relative aversion to risk would be a weaker 

condition to the extent that the aversion 

co-efficient can be measured as constant. 

From the summary of discussions of the 

authors, one can easily infer that ifρ is the 

saturated point where u(w) is maximum so 

that u′ ρ = 0 where the gradient function 

vanishes, then the risk aversion function 

a(w)   = −
u ′′(w)

u ′(w)
proportionally grows with 

wealth and becomes asymptotically 

unbounded as w → ρ . As the wealth 

approaches the saturation threshold ρ, then 

only a small fraction of utility is 

obtainable through a financial gain so that 

it will be financially unethical to assume 

further risk. Suppose function u(w)is 

concave, then the utility of the expected 

value of an uncertain amount of asset will 

be higher than the expected utility of the 

asset or wealth. 

From the knowledge of numerical analysis 

u will be concave if when given any 

number x0 in the interval (c, d) then there 

exists a constant parameter k depending 

on y0 such  

u(y)  −  u(y0)    ≤   k(y  −  y0). 

However, the utility function should meet 

the requirements of continuity in an 

interval (c, d)for it to be concave. If u(y)is 

differentiable then k = u′(y0), but when 

u(y) is not smooth, then there will be 

many k satisfying u(y)  −  u(y0)    ≤
  k(y  − y0) 

Theorem 

Assume the risk neutral is a linear 

combination of two different sub-risks 

ϴ 1and ϴ 2,  

whereY = C1ϴ 1   +   C2ϴ 2, then 
∂2Π(C1  ,C2)

∂C2
2     =       

ϴ 2σ2

u ′(w − μY  )
  and  

∂2Π(C1  , C2)

∂C1
2 =    

σ2
ϴ 1

u′(w −  μ
Y 

)
  

Proof 

E Y   =    E C1ϴ 1    +    C2ϴ 2 

= C1E(ϴ 1)   
+   C2E(ϴ 2) 

σ2
Y =   C1

2σ2
ϴ 1

  +   C2
2σ2

ϴ 2
 +

  2C1C2COV(ϴ 1  , ϴ 1 ), where var(ϴ 1)   =
 σ2ϴ1 

(μ
Y

 −  Σ+)    =     
μ

2
u ′′(w − μ

Y
)

2u ′(w − μ
Y  

)
  =

 
 C1

2σ2
ϴ 1

  +  C2
2σ2

ϴ 2
  +  2C1C2COV (ϴ 1  ,ϴ 2  ) u ′′(w  − μY )

2u ′(w − μ
Y  

)
   

Thus 

Π(C1  , C2) =

 
 C1

2σ2
ϴ 1

  +  C2
2σ2

ϴ 2
  +  2C1C2COV (ϴ 1  ,ϴ 2  ) u ′′(w  − μ

Y
)

2u ′(w − μY  )
  

∂Π(C1  ,C2)

∂C1
 =

 
 C1σ2

ϴ 1
   +  C2COV (ϴ 1  ,ϴ 2  ) u ′′(w − μY )

u ′(w − μ
Y  

)
 .  if we 

set  
∂Π(C1  ,C2)

∂C1
= 0,  

 C1σ2
ϴ 1

   +   C2COV(ϴ 1  , ϴ 2 ) u′′(w −  μ
Y

)

u′(w −  μ
Y 

)

= 0 

−
u′′ w − μ

Y
 

u′(w −  μ
Y 

)
=

C1σ2
ϴ 1

C2COV ϴ 1 , ϴ 2 
 

2( Σ+− μY  )

μ2

  =     −
u ′′(w − μY )

u ′(w  − μY  )
 . Thus the 

new aversion coefficient is defined as 

below  

a w ,  μ
Y
 =

2  Σ+− μY  

μ2

 =

C1σ2
ϴ 1

 C2COV  ϴ 1  ,ϴ 2  
                             𝑅𝑒𝑠𝑢𝑙𝑡1  

 Σ+   =  μ
Y

+
μ2C1σ2

ϴ 1

2 C2COV  ϴ 1  ,ϴ 2  
  

limC1→0
∂Π C1  ,C2 

∂C1
=  
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limC1→0  
 C1σ2

ϴ 1
   +  C2COV (ϴ 1  ,ϴ 2  ) u ′′(w − μ

Y
)

u ′(w − μY  )
   

lim
C1→0

∂Π(C1  , C2)

∂C1

=
C2COV(ϴ 1  , ϴ 2  )u′′(w − μ

Y
)

u′(w −  μ
Y 

)

= −
C2COV(ϴ 1  , ϴ 2  )C1σ2

ϴ 1

C2COV ϴ 1 , ϴ 2 
 

limC1→0
∂Π(C1  ,C2)

∂C1
= −σ2C1ϴ 1or 

lim
C1→0

∂Π(C1  , C2)

∂C1

=
−2( Σ+ − μ

Y
 )C2COV(ϴ 1  , ϴ 2  )

μ
2

 

Taking the second derivative, we have 

∂2Π(C1  , C2)

∂C1
2 =    

σ2
ϴ 1

u′(w −  μ
Y 

)
  

∂Π C1  , C2 

∂C2
  = 

 
 C2σ2

ϴ 2
   +  C1COV (ϴ 1  ,ϴ 2  ) u ′′(w − μ

Y
)

u ′(w − μY  )
   

limC1→0
∂Π C1  ,C2 

∂C2
=  

 limC1→0  
 C2σ2

ϴ 2
  +  C1COV (ϴ 1ϴ 2  ) u ′′(w − μY )

u ′(w  − μ
Y  

)
   

lim
C1→0

∂Π(C1  , C2)

∂C2
=  

C2σ2
ϴ 2

u′(w − μ
Y 

)
 

∂2Π(C1  , C2)

∂C2
2     =       

ϴ 2σ2

u′(w −  μ
Y 

)
  

Theorem 

If Y =   C1ϴ 1  +   C2ϴ 2  with E(ϴ 1)   =
  E(ϴ 2)   =   0, then 

∂Π(C1  , C2)

∂C1
   =   0 and  

∂Π(C1  , C2)

∂C2
   

=   0 

Proof 

Y =   C1ϴ 1  +   C2ϴ 2   with E(ϴ 1)   
=   E(ϴ 2)   =   0 

Recall that the risk premiumΠ must satisfy 

the condition that  

Eu(w + Y )   =    u(w −  Π) and hence 

Eu w + C1ϴ 1  +   C2ϴ 2 
=  u(w −  Π(C1 , C2)) 

Differentiating both sides we have 

∂Eu(w + C1ϴ 1   +    C2ϴ 2)

∂C1

=    
∂u(w −  Π(C1  , C2))

∂C1
 

∂Eu(w + C1ϴ 1   +    C2ϴ 2)

∂C2
 

=    
∂u(w −  Π(C1  , C2))

∂C2
 

Since expectation and differentiation 

operators can be swapped then 
E ∂u(w + C1ϴ 1   +   C2ϴ 2)

∂C1
=

   
∂u(w − Π(C1  ,C2))

∂C1
and 

E ∂u(w + C1ϴ 1   +    C2ϴ 2)

∂C2
 

=    
∂u(w −  Π(C1  , C2))

∂C2
 

E( ϴ 1) ∂u(w + C1ϴ 1   +   C2ϴ 2)

∂C1
=

−
∂u(w − Π(C1  ,C2))

∂C1

∂Π(C1  ,C2)

∂C1
and 

E( ϴ 2) ∂u(w +  C1ϴ 1   +    C2ϴ 2)

∂C2

=  −
∂u(w −  Π(C1 , C2))

∂C2

∂Π(C1  , C2)

∂C2
 

E( ϴ 1) ∂u(w + C1ϴ 1   +   C2ϴ 2)

∂C1
=

   −

∂u(w − Π(C1  ,C2)) 
 C 1σ2

ϴ 1
   +  C 2COV (ϴ 1 ,ϴ 2 ) u ′′(w  − μY )

u ′(w  − μY  )
 

∂C1

and 
E( ϴ 2) ∂u(w + C1ϴ 1   +   C2ϴ 2)

∂C2
=

   −
∂u(w − Π(C1  ,C2))

∂C2
 
 C2σ2

ϴ 2
   +  C1COV (ϴ 1  ,ϴ 2  ) u ′′(w − μY )

u ′(w − μY  )
   

By the 

conditionsE ϴ 1  =  0 and E(ϴ 2)   =   0 

 
 C1σ2

ϴ 1
   +   C2COV(ϴ 1  , ϴ 2 ) u′′(w − μ

Y
)

u′(w −  μ
Y 

)
  

=   0 

 
 C2σ2

ϴ 2
   +  C1COV (ϴ 1  ,ϴ 2  ) u ′′(w − μY )

u ′(w − μY  )
 =   0 ,  

∂Π(C1  , C2)

∂C1
 =   0 and  

∂Π(C1  , C2)

∂C2
   

=   0 
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Suppose the limiting process above 

fallswithin the neighbourhoodof small 

risks, it may be inferredthat insurance 

companyhaving high absolute risk 

aversion a(w)will not be willing to cover 

small risks, because the minimum 

expected payoff  E(w −  Y)which will 

make the risk acceptable will be larger. It 

is clear in Clark, Frijters and Shields 

(2008);Deprez and Gerber (1985) that 

a(w)is a measure of the degree of risk 

aversion of the insurance agent and 

consequently from actuarial point of view 

a(w) is a measure of the degreeof 

concavity of the utility function where the 

instantaneous speed at which marginal 

utilityis decreasing that isu′′ <  0 is 

evaluated.When utility preferences 

elicitsprudence, income uncertainties 

reduces current consumption and saving 

increases. It is prudence that informs 

individuals to treat future uncertain 

income with utmost care not expend as 

much currently as they would if future 

income is certain. The saving which 

results from the knowledge that the future 

is randomly uncertain isthe precautionary 

saving measure. The income received after 

retirement is a direct application of 

prudence.In Leland (1968), precautionary 

saving requires convex marginal utility in 

addition to aversion to risk. Kimball 

(1990);Kimball and Weil (2009)  proposed 

forces of intensity about precautionary 

saving motive, a measure of absolute 

prudence and relative prudence 

a′(t) =
u′ t u′′′ t −  u′′(t)u′′(t)

 u′(w) 2
 

a′ t =    
u′ t u′′′ t −  u′′(t)u′′(t)

 u′(t) 2
  

=    
u′ t u′′′ t −   u′′(t) 

2

 u′(t) 2  

At maximum,  

a′(t)  =   0  and u′ t u′′′ t −  u′′(t) 
2

   =

  0 

u′ t u′′′ t  =    u′′(t)u′′(t) 

u′′′ t 

u′′(t)
 =    

u′′(t)

u′ t 
 

p(t) = −
u ′′′ t 

u ′′(t)
is called absolute prudence 

and A(t) =  
p(t)

t
  is the relative prudence 

substituting  u′′(t) =   −u′(t)a(t) in a′ t , 

we have 

a′(t) =   
u′ t u′′′ t −  u′′(t) 

2

 u′(t) 2    

=    
u′ t u′′′ t  −  a(t) 2 u′(t) 

2

 u′(t) 2   

=    
u′′′ t  − u′ t  a(t) 2

u′ t 
 

Again, a′(t) =   0, then  u′′′ t  −
 u′ t  a(t) 2   =   0 

u′′′ t =    u′ t  a(t) 2 

a(t)    = ± 
u′′′ t 

u′ t 
=    − 

u′′′ t 

u′ t 
   

=       provided u′′′ t 
>   0 

If a′(t)  <   0, 𝑡ℎ𝑒𝑛  u′ t u′′′ t −

  u′′(t) 
2

<   0  ⇒   u′ t u′′′ t <  u′′(t) 
2
 

It is worthy of note that the policy holder‘s 

utility is a decreasing function if for every 

risk, the amount of premium with which 

he would exchange the risk for insurance 

coverage is relatively higher than his 

assets. The condition just described 

involves the third derivative of utility 

function especially when a′ t  is less than 

zero.  

Aversion to Risk among Insurance 

Agents with Same Assets 

Suppose un is a concave transformation of 

function ui  , i  = 1,2,…, (n−1): ∃an 

increasing and concave function  f(u)with 
df

du
> 0  and   

d2f

du2  ≤ 0such that for all w 

uj(w)

=   f(u1, u2 , u3, u4 , … , un−2, un−1), au j
(w)    

≥    au i
(w) 

We assume that there are n insurance 

agents,u1 , u2 , u3 , u4 , … , un who have the 

same arbitrary asset w. An insurance agent 
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u1will be more risk-averse than any 

another agent u2, 

insurance agent u2will be more risk-averse 

than any another agent u3, Insurance agent 

uiwill be more risk-averse than any 

another agent uj  for j =   i +  1  and 

i ≠  j, i =  1, 2, 3, 4, … , ( n − 1)with the 

same initial asset if given any risk which 

is undesirable for the insurance agent uiis 

also undesirable for insurance agent uj , so 

that the risk premium of any risk Y is 

bigger for any other insurance agent 

ujthan for insurance agent ui . The 

condition holds independently of the 

common initial asset level w of the 

insurance agents. If the condition above is 

limited to small risks then it is required 

that  

−un
′′(w)

un
′(w)

 ≥   −
un−1

′′(w)

un−1
′(w)

    

≥   −
un−2

′′(w)

un−2
′(w)

  

≥  …  ≥   −
u2

′′(w)

u2
′(w)

  

≥   
−u1

′′(w)

u1
′(w)

 

aun
(w)  ≥   aun−1

(w)   ≥   aun−2
(w)   

≥  …  ≥   au2
(w)   

≥   au1
(w) 

for all w. Suppose that  the insurance 

agents are restricted to small risks, then uj  

is more risk-averse than uiif function 

au j
 w is uniformly bigger thanau i

(w) so 

that ujwill be more concave than ui  by 

reason of aversion to risk. This condition 

means that uj(w)is a concave 

transformation of ui(w)  and consequently 

∃an increasing and concave function f 

such that  

un (w) =  f(u1 , u2 , u3 , u4 , … , un−2 , un−1)  

∂un(w)

∂w
 =     

∂f

∂u1

∂u1

∂w
   +   

∂f

∂u2

∂u2

∂w
   

+  
∂f

∂u3

∂u3

∂w
   

+  
∂f

∂un−2

∂un−2

∂w
   

+   …

+  
∂f

∂un−1

∂un−1

∂w
 1  

∂2un (w)

∂w2
=   

∂u1

∂w
 

2 ∂2  f

∂u1
2

   +    
∂f

∂u1

∂2u1(w)

∂w2
   +

  
∂u2

∂w
 

2 ∂2  f

∂u2
2

   +    
∂f

∂u2

∂2u2(w)

∂w2
   +

 
∂u3

∂w
 

2 ∂2  f

∂u3
2

   +    
∂f

∂u3

∂2u3(w)

∂w2
   +

   
∂u4

∂w
 

2 ∂2  f

∂u4
2    +    

∂f

∂u4

∂2u4(w)

∂w2   +

+   
∂un−2

∂w
 

2 ∂2  f

∂un−2
2    +    

∂f

∂un−2

∂2un−2(w)

∂w2   +

⋯ +   
∂un−1

∂w
 

2 ∂2  f

∂un−1
2    +    

∂f

∂un−1

∂2un−1(w)

∂w2

    

   2  

Dividing  2  by 1  when taking  n  =   2 

and by mutual comparison we have 

d loge  
∂u2(w)

∂w
 

dx
=      

∂u1

∂w
 

d loge  
∂f

∂u1
 

du1
   

+   
d loge  

∂u1

∂w
 

dw
 

au2
 w 

=   au1
(w)   +    

∂u1

∂w
 

d loge  
∂f

∂u1
 

du1
, 

aun
(w)    ≥    aun−1

(w) 

aun−1
(w)    ≥    aun−2

(w) 

. 

. 

. 

au2
(w)    ≥    au1

(w) 

The Aversion Integral 

Now     a(w)     = −
du ′(w )

dw
du (w )

dw

 implies 
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−  
d log e u ′(z)

dz
 =     a(z)

w

0
dz

w

0
.This is 

called the aversion integral hence 

logeu′ w −  logeu′ 0  =   − a(t)
w

0
dt

    

    

 a(t)
w

0
dt  =   lim  a t ∆tk  =

  logeu′ 0  − logeu′ w >  0 

    

this is the risk aversion integral which 

converges and represents the difference of 

logarithm of utility function computed at 

two different points in the interval [0 w]. 

Now,  a(t)
w

0
dt represents the total area 

under the curve of intensity a(t) for0 ≤
 t  ≤  w and can be numerically evaluated 

simply by invoking Newton-cotes formula 

with 2n number of strips and(2n +
 1)number of a(t)values. The risk 

aversion integral is the length of 

width(W −  0), multiplying the mean 

value of the aversion co-efficient function 

within the interval(0, w),  a(t)
w

0
dt =

  wf(⍺ ),0 <  ⍺  <  𝑤.  The average value 

of the aversion coefficient a(t)is the sum 

of the weighted functional values divided 

by the sum of the weights where the 

weights are           

W  =   W0 + W1 + W2+. . . + Wn  and w 
=  2nh,
W0   =   1, W1   
=  4, W2   =  2, … 

W =  1 +  4 +  2 +  4 +  2 +  4 +  2 +  4
+ ⋯ +  1, up to (2n
+ 1) times 

2 +  4 +  2 +  4 +  2 +  4 
+ ⋯       2n times = 

2 +   2 +  2 +   2 +  … (n times)  +  4 
+  4 +  4 +  4 
+ ⋯ . . (n times)   = 

  2

n

1

   +     4

n

1

   =   2n +  4n =   6n 

Thus dividing the interval(0, w) by 2n 

strips, we have  

 a(t)
w

0
dt =

h

3
 a1 + 4a2 +  2a3 +  4a4 +

2a5 + ⋯ + 4an−2 +  2an−1 + 4an +

 an+1 −
w(h4)f 4 (t )

180
,0 ≤  t ≤  w, where 

ai  are the functional values of aversion co-

efficient at the i-th point wn =   nh 
w

6n
=    

h

3
 

logeu′ 0  −  logeu′ w  =    
h

3
 a1 +

4a2+ 2a3+ 4a4+ 2a5+…+4an−2+ 
2an−1+4an+ an+1 −  w(h4)f4(t 
)180implies that 

 a1 + 4a2 +  2a3 +  4a4 +  2a5 + ⋯
+ 4an−2 +  2an−1

+ 4an + an+1  

−  
w(h4)f  4 (t )

180
.

=    loge  
(u′ 0 )

(u′ w 
 

3
h

 

2  ai  +  4  ai   +  a1  

−   
w(h4)f  4 (t )

180

=    loge  
(u′ 0 )

(u′ w 
 

3
h

 

From above, we have a(t)
w

0
dt  =

  loge  
(u ′ 0 )

(u ′ w 
   ⇒    

(u ′ 0 

(u ′ w 
   =

   e a(t)
w

0
dt  given that u′ .  ≠  o(1)  that 

is, does not vanish.   

In the trivial case where u′ 0 =   1  , (14) 

now becomes, 

u′ w =  e− a(t)
w

0
dw . This is the gradient 

function for the utility functional u(.), 

again from (13), 

u′ w   =   e− a(t)
w

0
dw    

=    1 −    a(t)
w

0

dw 

 a(t)
w

0

dt =   −  
(u′′ t 

(u′ t 

w

0

dt 

−  a(t)(u′ t 
w

0

dt =    (u′′ t 
w

0

dt  

=   u′ w  −  u′ 0  

u′ w =   u′ 0  −  a(t)(u′ t 
w

0
dt  , 

integration by part yields, 
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u′ w =   u′ 0  −  a w u w 

− a 0 u 0 

−  u(t)a′ t 
w

0

dt  

u′ w  =   u′ 0  +  a(0)u(0) +

  a′ t u′ t 
w

0
dt −  a(w)u(w).  

a(w)   =

   
u ′ 0  + a 0 u 0 +  a ′ t u ′ t 

w

0
dt − u ′ w 

u(w)
,   

u(w) > 0 

This establishes another form of risk 

aversion function. Therefore 

u′ 0  +  a(0)u(0)  +  a′ t u′ t 
w

0

dt 

−  a(w)u(w)    

=   1 −   a(t)
w

0

dw 

Solutions to the Second Order Linear 

Differential Equations 

Whenever the risk aversion function 

a(w)is given and it is required to 

determine the corresponding utility 

function, then we find a function 

u(w)which will satisfy the equation 

G(w, u, u′, u′′)   =   0that is 

u′′ =   g(w, u, u′)and such that u(π)    =
  0, u′(π)    =   1 are the boundary 

conditions 

a(w)   =   −
u′′(w)

u′(w)
   =    −d loge u′(w) 

a(w)    =    −d loge u′(w) 

 a w dw =   −  d log
e

u′(w)  dw
t

π

  
t

π

=   −[log
e

u′(t)

− log
e

u′(π)]    

=   −[log
e

u′(t)]  

=   colog
e

u′(t) 

u′(t) =   e− a w dw
t

π  

u (t)   =   e− a w dw
t

π dt
w

π
so that  

u(w)    =     e− a w dw
t

π  
w

π
dt for   w −

 π>0,  

u(w)    =      e− kdw
t

π  dt 

w

π

=     e kπ− kt

w

π

 dt    

=    
e kπ− kt

−k
 
t = w

t = π
  

u(w)    =     
e kπ− kπ

k
  −    

e kπ− kw

k
   

=     
1

k
  −    

e kπ− kw

k
   

=     
1

k
  

−    
1

k
 e kπ− kw  

u(w)    =    
1

k
  −    

1

k
 1 +  kπ −  kw     

=     
1

k
  −  

1

k
−  π

+  w  =    w −  π 

u(w +  π)    =   w, so  u′(w)    =
   u′(w +  π) implies (w +  π)is 

equivalent to w 

So fork  ≥  0, u(w)   =    w −  π 

If aversion  a w = k where k is a 

constant, then a change in assets may not 

necessarily result in a corresponding 

change in preference among risk. Again 

from the earlier discussions above 

Theorem: The differential equation is 

solvable  

u′′(w)   +   a(w) u′(w)    =   0, under the 

boundary condition 

u(π)   =   0 and  u′(π)   =   1, where π ∈
 0, w  
Recall that maximum premium Σ+   =

  μ
Y

 +   
μ

2

2
 a(w) , assuming real constants 

μ
Y

, μ
2
  and  Σ+ . This second order 

differential equation has a two-parameter 

family of solutions. To obtain a unique 

solution, we invoke the standard boundary 

conditions. 

2u′(w)μ
Y

 −   μ
2
u′′(w)    =   2u′(w)Σ

+
 

σ2
Yu′′(w)   +  2 Σ+  −  μ

Y
 u′(w)   =

  0subject to the following standard 
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boundary conditions  u(π)   =
  0 and  u′(π)   =   1, where π ∈  0, w  

u′′ w  + 
2 Σ+  −  μ

Y
 

μ
2

u′ w = 0 

The auxiliary equation is s2  +

  
2 Σ+ − μ

Y
 

μ
2

s   =  0 

s  s +  
2 Σ+  −  μ

Y
 

σ2
Y

 = 0 

s  =   0  or  s  =  
2 μ

Y
 −  Σ+ 

μ
2

 

u(w)    =   k e

2 μ
Y

 − Σ+ w

μ
2  

u(π)    =   0 

k e

2 μY − Σ+ π

μ2 =   0andk =  0 

u′(w) =   k 
2 μ

Y
 −  Σ+ 

μ
2

e

2 μ
Y

 − Σ+ w

μ
2  

u′(π)  =    k 
2 μ

Y
 −  Σ+ 

μ
2

e

2 μ
Y

 − Σ+ π

μ
2   

=   1 

K =
σ2

Y

2 μ
Y

 −  Σ+ 
 e

−2 μ
Y

 − Σ+ π

μ
2

 

u w   =

  
σ2

Y

2 μ
Y

 − Σ+ 
e

2 μY − Σ+ w  − 2 μY − Σ+ π

μ2 , μ
Y

>

 Σ+                   result2 ,   

Reduction of Order 

In actuarial literature, we are permitted to 

reduce the order of the aversion so as to 

apply a simple numerical procedure using 

the transformation 

u′(w) =   f(w) 

u′′(w) =   f′(w) 

a(w)   =   − 
f
′(w)

f(w)
 

f(t + y) =   f(y)  +   t 
df(t + y)

dy
  

+   
t2

2!

d
2
f(t + y)

dy
2

  

+    
t3

3!

d
3
f(t + y)

dy
3

   

+   
t4

4!

d
4
f(t + y)

dy
4

 

f(y − 2) =   f(y)  −   2 
df(y)

dy
  

+   2
d

2
f(y)

dy
2

  

+    
4

3

d
3
f(y)

dy
3

   

+   
2

3

d
4
f(y)

dy
4

 

f(y + 2) =   f(y)  +  2 
df(y)

dy
  

+   2
d

2
f(y)

dy
2

  

+    
4

3

d
3
f(y)

dy
3

   

+   
2

3

d
4
f(y)

dy
4

 

f(y − 1) =   f(y)  −    
df(y)

dy
  +   

1

2

d
2
f(y)

dy
2

  

−    
1

6

d
3
f(y)

dy
3

   

+   
1

24

d
4
f(y)

dy
4

 

f(y + 1)  =   f(y)  +   
df(y)

dy
  +   

1

2

d
2
f(y)

dy
2

  

+    
1

6

d
3
f(y)

dy
3

   

+   
1

24

d
4
f(y)

dy
4
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f(y − 2) − f(y + 2) =   −  4
df(y)

dy
 

+    
8

3

d
3
f(y)

dy
3

  

f(y − 1) −  f(y + 1)  

=    −  2
df(y)

dy
 

+    
1

3

d
3
f(y)

dy
3

  

8f(y − 1) −  8f(y + 1)   

=    −  16
df(y)

dy
 

+   
8

3

d
3
f(y)

dy
3

  

f(y − 2) −  f(y + 2)    
−   8f(y − 1)  −  8f(y

+ 1)  

=   −  4
df(y)

dy
 

+    
8

3

d
3
f(y)

dy
3

   

−  −16
df(y)

dy

−   
8

3

d
3
f(y)

dy
3

  

f(y − 2) − (y + 2)    −   8f(y − 1)  +  8f(y

+ 1)

=   −4
df(y)

dy
  

−   
8

3

d
3
f(y)

dy
3

 

+  16
df(y)

dy
   

+   
8

3

d
3
f(y)

dy
3

 

f(y − 2) −  f(y + 2)   −   8f(y − 1)  
+  8f(y + 1)    

=   12
df(y)

dy
 

f(y − 2) −f(y + 2) −  8f(y − 1) + 

8f(y + 1)   =  12
df(y)

dy
 

df(y)

dy
  =  

f(y+2) −f(y+2)   −  8f(y−1) + 8f(y+1)

12
but 

by the reduction of order 

a(y)   =   − 
f
′(y)

f(y)
  

=   
u′(y + 2)  − u′(y − 2)   +   8u′(y − 1) −  8u′(y + 1)

12u′(y)
 

Effect of Non Actuarially Neutral Risk 

𝐘  

The condition arises when E(Y)   ≠   μ
Y

, 

that is when the insurance premium is not 

equal to the expected claim. 

E[u(w −  Y)]   
=    E[u(w −  μ

Y
)]  +   u′(w 

−  μ
Y

)E(Y−μ
Y

)  

+ 
u′′(w −  μ

Y
)E(Y − μ

Y
) 2

2
 

u(W −  Σ+)   =   u(w −  μ
Y

)  +   u′(w 

−  μ
Y

)(μ
Y

 −  Σ+) 

E[u(w −  μ
Y

)]  + au′(w 

−  μ
Y

)E[(Y − μ
Y

)]   

+   
au′′(w −  μ

Y
)E(Y − μ

Y
) 2

2
    

= u(w −  μ
Y

)  + u′(w −  μ
Y

)(μ
Y

 −  Σ+) 

u(w −  μ
Y

)  + u′(w −  μ
Y

)E[(Y − μ
Y

)]  

+  
u′′(w −  μ

Y
)σ2

Y

2
    

= u(w −  μ
Y

)  

+  u′(w −  μ
Y

)(μ
Y

 

−  Σ+) 

u′(w −  μ
Y

)E[(Y − μ
Y

)]  

+   
u′′(w −  μ

Y
)σ2

Y

2
  

=    u′(w −  μ
Y

)(μ
Y

 

−  Σ+) 

E[(Y − μ
Y

)]  +  
u′′(w −  μ

Y
)σ2

Y

2u′(w −  μ
Y

)
   

=  (μ
Y

 −  Σ+) 

 Σ+ = μ
Y

  −   E[(Y − μ
Y

)]  −

  
u′′ w − μ

Y
 σ2

Y

2u′ w − μ
Y
 

                                                    result3  

.  
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Thus the risk premium is just enough to 

offset the actuarial value  E[(Y − μ
Y

)] of 

a small risk premium  Y  where the policy 

holder will be indifferent between having  

Y  and not having it when the actuarial 

value is proportionately a(w) times half 

the variance of Y  

Conclusions 

In this paper, structural model have been 

developed which is built upon the existing 

work by incorporating assumptions such 

as that the aversion co-efficient has a 

convergent integral, that is  a y dy <  ∞  

and that u(.) possess derivatives of all 

orders.Meaningful mathematical risk 

construct describing the likelihood for 

evidence based utility calculations can be 

arrived having the potential for new 

actuarial insight as a consequence. Risk 

aversion is the parameter describing the 

amount of satisfaction or utility preference 

derivable from money or goods. The 

conventional way of estimating aversion 

co-efficient when applied to purchase 

insurance employs Taylor‘s series 

expansion about the utility of the initial 

wealth.  The implication here is that there 

should be infinitesimally small deviation 

from the wealth so that it will not be 

necessary to evaluate the structural form 

of the utility and as a result, there is no 

need to cross-check whether the aversion 

to risk has been manipulated when utility 

of two outcomes are contrasted. The Risk 

aversion derived here through analytic 

method is a function of insurance 

maximum premium, individual wealth and 

probability of loss.Actuaries suggest that 

the degree of decision maker response as a 

function of aversion intensity to a positive 

change in relative wealth provided that the 

absolute wealth remains constant depends 

on the accompanying change in the 

weightings assigned to the relative wealth 

and consequently a constant weight may 

cause aversion to risk intensity to increase. 

However an increase in the weightings 

assigned to relative wealth will reduce the 

aversion to risk. This paper finds 

applications in insurance of self protection 

for increased risk aversion, evaluating 

utility preferences of inequality aversion 

and aversion preferences in equilibrium 

asset pricing model. 
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